

Cambridge IGCSE[™]

CANDIDATE NAME				
CENTRE NUMBER		CANDIDATE NUMBER		

CHEMISTRY 0620/33

Paper 3 Theory (Core)

October/November 2023

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

[Total: 6]

1 A list of substances is shown.

ammonia
calcium oxide
carbon monoxide
cobalt(II) chloride
ethane
ethanol
ethene
oxygen
potassium oxide
sodium sulfate
sulfuric acid
water

Answer the following questions using only the substances from the list. Each substance may be used once, more than once or not at all.

Give the name of the substance that:

is a product of photosynthesis	[1]
is a member of the alkene homologous series	[1]
has an ion with a charge of 1–	[1]
is used to remove sulfur dioxide in flue gas desulfurisation	[1]
is the product formed in a hydrogen-oxygen fuel cell	[1]
is used to test for water.	[1]
	is a member of the alkene homologous series has an ion with a charge of 1— is used to remove sulfur dioxide in flue gas desulfurisation is the product formed in a hydrogen—oxygen fuel cell is used to test for water.

			3
2	Нус	droca	arbons are compounds of carbon and hydrogen.
	(a)	Sta	te the meaning of the term compound.
			[2
	(b)	_	2.1 shows a fractionating column for separating petroleum into different hydrocarbor tions.
			fraction
			refinery gas
			, gasaline
			gasoline gasoline
			naphtha karaaana
			<u></u>
			FB
			fuel oil
			lubricating oil
			— bitumen
			Fig. 2.1
		(i)	On Fig. 2.1, draw an X inside the column to show where the hydrocarbon with the highes boiling point collects.
		(ii)	Name the fraction labelled B in Fig. 2.1.
	((iii)	State the name of the fraction which has hydrocarbons with the shortest chain length.

[Total: 6]

......[1]

(iv) State one use of the naphtha fraction.

3 (a) Table 3.1 shows the average concentrations, in ng/1000 cm³, of air pollutants in four different years.

Table 3.1

		concentration of air pollutant in ng/1000 cm ³				
year	carbon monoxide	hydrocarbons	oxides of nitrogen	particulates	sulfur dioxide	
2019	5.3	22.0	15.6	19.0	20.0	
2020	4.1	13.5	14.8	20.1	18.2	
2021	5.8	14.8	22.7	23.5	16.2	
2022	2.6	18.0	10.9	26.2	14.0	

(i)	Name the pollutant which has the highest concentration in 2019.
(ii)	Name the pollutant that shows a continuous decrease in concentration from 2019 to 2022.
(iii)	Calculate the average mass, in ng, of hydrocarbons in a 200 cm ³ sample of polluted air in 2019.
	mass = ng [1]
(b) (i)	State one source of oxides of nitrogen in the air.
(ii)	Oxides of nitrogen contribute to acid rain.
	Give one other effect of oxides of nitrogen in the air. [1]
(iii)	Unpolluted water has a neutral pH. Choose from the list the pH value of a neutral substance.
	Draw a circle around your chosen answer.
	pH1 pH6 pH7 pH14 [1]

(c)	Nitr	rogen dioxide is an acidic oxide.	
	Cho	pose an oxide from the list which is also an acidic oxide.	
	Tick	⟨⟨√⟩ one box.	
		copper(II) oxide	
		magnesium oxide	
		phosphorus(V) oxide	
		sodium oxide	
			1]
(d)	Sulf	fur dioxide reacts with oxygen to produce sulfur trioxide.	
	(i)	Complete the symbol equation for this reaction.	
		$SO_2 + \rightleftharpoons 2SO_3$ [2	2]
	(ii)	State the meaning of the symbol ← .	
		[1]
((iii)	Sulfur trioxide reacts with calcium oxide to produce calcium sulfate.	
		Describe a test for sulfate ions.	
		test	
		observations	
		[2	2]

[4]

4	Nitr	rogen is a gas at room temperature.
	(a)	State two general properties of a gas.
		1
		2
		[2
	(b)	Fig. 4.1 shows the physical states of nitrogen.
		solid nitrogen nitrogen gas
		Fig. 4.1
		Name the changes of physical states A and B .
		A
		В
		[2
	(c)	Describe solid nitrogen and nitrogen gas in terms of the arrangement and separation of the particles.
		solid nitrogen
		arrangement
		agnoration
		separation
		nitrogen gas
		arrangement
		separation

(d)	A sealed gas syringe contains 80 cm ³ of nitrogen gas.
	State how increasing the pressure affects the volume of nitrogen gas in the gas syringe when the temperature remains constant.
	[1]
	[Total: 9]

- 5 This question is about metals.
 - (a) Table 5.1 shows some properties of the Group I metals.

Table 5.1

metal	melting point in °C	boiling point in °C	atomic volume in cm³/mol	observations on reaction with water
lithium	181	1342	12.9	bubbles form slowly but no flame
sodium	98	883	23.7	
potassium	63	760		bubbles form very rapidly and flame seen
rubidium		686	55.8	explodes

Use the information in Table 5.1 to predict:

(i)	the melting point of rubidium	[1]
(ii)	the atomic volume of potassium	[1]
(iii)	the observations when sodium reacts with water	
		[1]
(iv)	the physical state of sodium at 1300 °C. Give a reason for your answer.	
	physical state	
	reason	
		[2]

(b)	Iron	is extracted in a blast furnace by reduction of iron(III) oxide.	
	(i)	In the first step, carbon burns in air to form carbon dioxide.	
		State the percentage of oxygen in clean, dry air.	
			[1]
	(ii)	In the second step, carbon monoxide is produced by the reaction of carbon dioxide v carbon.	vith
		$CO_2 + C \rightarrow 2CO$	
		Choose the correct statement about this reaction.	
		Tick (✓) one box.	
		the carbon dioxide is oxidised and the carbon is reduced	
		both carbon dioxide and carbon are oxidised	
		the carbon dioxide is reduced and the carbon is oxidised	
		both carbon dioxide and carbon are reduced	[4]
	(iii)	In the third step, iron(III) oxide is reduced by carbon monoxide. The reaction is exothermic.	[1]
		State the meaning of the term exothermic.	
			[2]
(c)		cium carbonate is added to the blast furnace. e calcium carbonate breaks down as shown.	
		high temperature calcium carbonate ———→ calcium oxide + carbon dioxide	
	(i)	Name the type of chemical reaction that takes place.	
			[1]
	(ii)	Complete this sentence about the calcium oxide that is produced in the blast furnace.	
		Calcium oxide reacts with impurities in the iron ore to form	[1]

(d) Table 5.2 gives the observations when four different metals react with air.

Table 5.2

metal	observations
cerium	forms an oxide layer slowly without heating
copper	forms an oxide layer only when heated
gold	does not form an oxide layer even when heated
rubidium	forms an oxide layer quickly without heating

Put the four metals in order of their reactivity. Put the least reactive metal first.

least reactive —		most reactive

[2]

[Total: 13]

6 Hydrogen peroxide, H₂O₂, breaks down slowly at 40 °C to produce oxygen gas and water.

$$2H_2O_2 \rightarrow 2H_2O + O_2$$

A student investigates the breakdown of hydrogen peroxide at 40 °C in the presence of a catalyst.

(a) Fig. 6.1 shows the volume of oxygen gas released as the reaction proceeds.

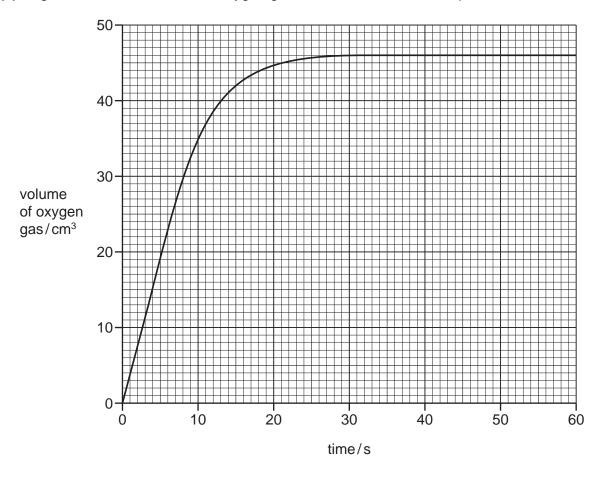


Fig. 6.1

(i) Deduce the volume of oxygen gas released after 15 seconds.

(ii) The student repeats the experiment at 20 °C.

All other conditions stay the same.

Draw a line on the grid in Fig. 6.1 to show how the volume of oxygen changes when a temperature of 20 °C is used. [2]

(b) (i)	The student repeats the experiment without a catalyst.									
	All other conditions stay the same.									
	Describe how the rate of reaction differs when no catalyst is used.									
	[1]									
(ii)	The student repeats the experiment using a lower concentration of hydrogen peroxide.									
	All other conditions stay the same.									
	Describe how the rate of reaction differs when a lower concentration of hydrogen peroxide is used.									
	[1]									
(a) 11	due non recovide and not be a reducing a continue to a recover of an allieli									
	drogen peroxide can act as a reducing agent in the presence of an alkali.									
(i)	State the meaning of the term alkali.									
(::)										
(ii)	Give the formula of the ion that is present in all alkaline solutions.									
/** *	[1]									
(iii)	State the colour of methyl orange in an alkaline solution.									
<i>(</i> ;)	[1]									
(IV)	(iv) Aqueous ammonia is an alkali.									
	Complete the word equation for the reaction of aqueous ammonia with hydrochloric acid.									
	ammonia + hydrochloric →									
	[1]									
	[Total: 9]									

[2]

7	Ethanoic acid	and methad	crylic acid	are both	carboxylic	acids

(a) Complete the word equation for the reaction of ethanoic acid with calc
--

	ethanoic acid	+	calcium	\rightarrow		+	
--	------------------	---	---------	---------------	--	---	--

- **(b)** Ethanoic acid can be reduced to ethanol.
 - (i) Name the homologous series that includes ethanol.

[1]

(ii) Ethanol can be manufactured by fermentation.

Describe **two** conditions needed for fermentation.

1

2[2]

(c) Fig. 7.1 shows the displayed formula of methacrylic acid.

Fig. 7.1

(i) On Fig. 7.1, draw a circle around the functional group which reacts with aqueous bromine. [1]

- -

(ii) State the colour of aqueous bromine.

.....[1]

(iii) Deduce the molecular formula of methacrylic acid.

.....[1]

(d) Methacrylic acid can be converted to methyl methacrylate. The molecular formula of methyl methacrylate is $C_5H_8O_2$.

Complete Table 7.1 to calculate the relative molecular mass of methyl methacrylate.

Table 7.1

atom	number of atoms	relative atomic mass	
carbon	5	12	5 × 12 = 60
hydrogen		1	
oxygen		16	

	relative molecular mass = [2]
(e)	Methyl methacrylate can be polymerised to produce a plastic.
	Describe two environmental problems caused by plastics.
	1
	2[2]

(f) Poly(ethene) is a polymer.

Draw the displayed formula of the monomer used to make poly(ethene).

[1]

[Total: 13]

- 8 Potassium chloride is an ionic compound.
 - (a) Complete Fig. 8.1 to show:
 - the electronic configuration of a potassium ion
 - the charge on the ion.

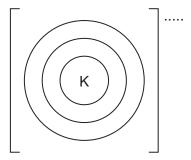


Fig. 8.1

[2]

(b) Deduce the number of protons and neutrons in the chloride ion shown.

³⁷C*l*−

number of protons	
number of neutrons	
	[2

- (c) Molten potassium chloride is electrolysed using graphite electrodes.
 - (i) Define the term electrolysis.

......[2]

(ii) State the names of the products at each electrode and give the observations at the positive electrode.

observations at the positive electrode

[3]

[Total: 12]

	10	
(d)	Graphite electrodes are inert.	
	Name one other inert electrode.	
		[1]
(e)	Graphite and diamond are two forms of carbon.	
	Fig. 8.2 shows the structure of diamond.	
	Fig. 8.2	
	(i) Name the type of bonding in diamond.	
		[1]
	(ii) Use Fig. 8.2 to explain why diamond is used in cutting tools.	
		[1]

17

BLANK PAGE

18

BLANK PAGE

19

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

The Periodic Table of Elements

						_									_			_			_	los
	\₹	2	운	heliun 4	10	Ne	neon 20	18	Ā	argon 40	36	궃	krypto.	54	×e	xenor 131	86	R	radon	118	O	oganess
	\				6	ட	fluorine 19	17	Cl	chlorine 35.5	35	Ā	bromine 80	53	П	iodine 127	85	¥	astatine -	117	<u>⊼</u>	tennessine -
	IN				80	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>a</u>	tellurium 128	84	Ъо	polonium –	116	^	livermorium -
	^				7	Z	nitrogen 14	15	₾	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	<u>.</u>	bismuth 209	115	Mc	moscovium -
	≥				9	ပ	carbon 12	14	S	silicon 28	32	Ge	germanium 73	50	Su	tin 119	82	Pb	lead 207	114	Fl	flerovium -
	≡				5	Δ	boron 11	13	Αl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	l_	thallium 204	113	R	nihonium -
								•			30	Zu	zinc 65	48	g	cadmium 112	80	Η̈́	mercury 201	112	S	copernicium
											29	C	copper 64	47	Ag	silver 108	62	Αn	gold 197	111	Rg	roentgenium -
dno											28	z	nickel 59	46	Pd	palladium 106	78	₹	platinum 195	110	Ds	darmstadtium -
Gro											27	ဝိ	cobalt 59	45	R	rhodium 103	77	Ϊ́	iridium 192	109	Μţ	meitnerium -
		-	I	hydrogen 1							26	Fe	iron 56	44	Ru	ruthenium 101	92	Os	osmium 190	108	Hs	hassium
					•						25	Mn	manganese 55	43	ည	technetium -	75	Re	rhenium 186	107	Bh	bohrium
						log	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	>	tungsten 184	106	Sg	seaborgium
				Key	atomic number	mic sym	name ative atomic ma				23	>	vanadium 51	41	g	niobium 93	73	<u>⊾</u>	tantalum 181	105	o O	dubnium -
						ato	rela				22	ı	titanium 48	40	Zr	zirconium 91	72	士	hafnium 178	104	Ŗ	rutherfordium -
											21	Sc	scandium 45	39	>	yttrium 89	57-71	lanthanoids		89–103	actinoids	
	=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ഗ്	strontium 88	56	Ва	barium 137	88	Ra	radium
	_				3	<u> </u>	lithium 7	11	Na	sodium 23	19	¥	potassium 39	37	Rb	rubidium 85	22	S	caesium 133	87	Ē	francium -
	Group	Group III IV V VI	Group III IV V VI VII	Group III IV V VI VII H H VII VII VII H H H VII VII VII H H H H VII VII H H H H H H H H H	Stroup III IV V VI VII Hydrogen Hey The street Th	II	II	II	II	II	III	II	III	II	II	II	II	1	II	III IV V VI VIII IV V VI VIII IV VI V	II	II

71 Lu lutetium 175	103 Lr
70 Yb ytterbium 173	No nobelium
69 Tm thulium 169	Md mendelevium
68 Er erbium 167	100 Fm fermium
67 Ho holmium 165	99 ES einsteinium
66 Dy dysprosium 163	98 Cf californium
65 Tb terbium 159	97 BK berkelium
64 Gd gadolinium 157	96 Cm curium
63 Eu europium 152	95 Am americium
62 Sm samarium 150	94 Pu
61 Pm promethium	Np neptunium
60 Nd neodymium 144	92 U uranium 238
Pr praseodymium 141	91 Pa protactinium 231
Cenum 140	90 Th thorium 232
57 La lanthanum 139	89 AC actinium

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).